Convulsioni neonatali familiari benigne e corrente M: dall’analisi mutazionale dei geni KCNQ2/3 ai meccanismi molecolari della liberazione di neurotrasmettitori e di voltaggio-dipendenza nei canali del potassio
- 3 Anni 2007/2010
 - 141.900€ Totale Fondi
 
L’epilessia è una malattia che colpisce circa 0.5-1% della popolazione, costituendo un carico notevole per gli individui affetti, le loro famiglie, e tutto il sistema sanitario; la comprensione dei meccanismi genetici, biochimici, e funzionali responsabili di epilessia è dunque un obiettivo principale per la salute umana. La gran parte delle epilessie non presenta né una specifica causa scatenante né una chiara trasmissione ereditaria; tuttavia, l’1-2% delle forme epilettiche sono geneticamente determinate. Tra queste, le Convulsioni Benigne Neonatali Familiari (BFNC) hanno un’insorgenza caratteristica durante la prima settimana di vita postnatale che scompare poi dopo poche settimane o mesi, senza alterare lo sviluppo psicomotorio del bambino affetto. Le basi genetiche delle epilessie ereditarie, inclusa la BFNC, sono state identificate, suggerendo l'ipotesi che un’alterata funzione dei canali ionici (proteine che controllano il flusso di specifici ioni attraverso la plasmamembrana di neuroni ed altre cellule eccitabili) possa causare l’ipereccitabilità neuronale alla base dell’epilessia. Pertanto, è di pressante interesse la comprensione di come tali alterazioni genetiche disturbino l’attività elettrica cerebrale, e come determinino le manifestazioni convulsive. Il presente progetto di ricerca, che verrà condotto da un gruppo multidisciplinare già strutturato di ricercatori clinici e di base, mira a risolvere alcuni aspetti cruciali nel campo dell’epilessia. Il raggiungimento degli obiettivi proposti, attraverso la comprensione dell’intimo meccanismo molecolare di funzionamento e del ruolo fisiopatologico di una specifica classe di canali ionici, migliorerà le conoscenze sulla patogenesi della BFNC, consentendo inoltre lo sviluppo di nuovi approcci terapeutici per i pazienti epilettici, il 25% dei quali non riceve un trattamento soddisfacente.
Pubblicazioni Scientifiche
- 2015-09-01 BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE 
Epilepsy-causing mutations in Kv7.2 C-terminus affect binding and functional modulation by calmodulin
 - 2008-09-01 BIOPHYSICAL JOURNAL 
Gating consequences of charge neutralization of arginine residues in the S4 segment of Kv7.2, an epilepsy-linked K+ channel subunit
 - 2012-03-21 BIOPHYSICAL JOURNAL 
Gating Currents from Kv7 Channels Carrying Neuronal Hyperexcitability Mutations in the Voltage-Sensing Domain
 - 2009-02-01 BIOPHYSICAL JOURNAL 
Gating currents from neuronal Kv7 channels
 - 2007-07-01 CHANNELS 
Correlating the Clinical and Genetic Features of Benign Familial Neonatal Seizures (BFNS) with the Functional Consequences of Underlying Mutations
 - 2009-07-01 CHANNELS 
Gating currents from neuronal KV7.4 channels General features and correlation with the ionic conductance
 - 2015-02-01 EPILEPSIA 
A novel KCNQ3 mutation in familial epilepsy with focal seizures and intellectual disability
 - 2012-09-01 EUROPEAN JOURNAL OF PAIN 
Molecular and pharmacological evidence for a facilitatory functional role of pre-synaptic GLUK2/3 kainate receptors on GABA release in rat trigeminal caudal nucleus
 - 2015-07-15 FRONTIERS IN CELLULAR NEUROSCIENCE 
Molecular pathophysiology and pharmacology of the voltage-sensing module of neuronal ion channels
 - 2011-01-01 FRONTIERS IN PHARMACOLOGY 
The voltage-sensing domain of Kv7.2 channels as a molecular target for epilepsy-causing mutations and anticonvulsants
 - 2014-03-01 HUMAN MUTATION 
Novel KCNQ2 and KCNQ3 Mutations in a Large Cohort Of Families with Benign Neonatal Epilepsy: First Evidence for an Altered Channel Regulation by Syntaxin-1A
 - 2009-04-01 JOURNAL OF NEUROCHEMISTRY 
Activation of pre-synaptic M-type K+ channels inhibits [3H]d-aspartate release by reducing Ca2+ entry through P/Q-type voltage-gated Ca2+channels
 - 2010-10-01 JOURNAL OF NEUROCHEMISTRY 
Pre-synaptic BK channels selectively control glutamate versus GABA release from cortical and hippocampal nerve terminals
 - 2015-03-04 JOURNAL OF NEUROSCIENCE 
Early-Onset Epileptic Encephalopathy Caused by Gain-of-Function Mutations in the Voltage Sensor of Kv7.2 and Kv7.3 Potassium Channel Subunits
 - 2010-03-01 JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS 
Expression, Localization, and Pharmacological Role of Kv7 Potassium Channels in Skeletal Muscle Proliferation, Differentiation, and Survival after Myotoxic Insults
 - 2008-11-15 JOURNAL OF PHYSIOLOGY-LONDON 
Low expression of Kv7/M channels facilitates intrinsic and network bursting in the developing rat hippocampus
 - 2013-02-01 MOLECULAR BIOLOGY OF THE CELL 
Specification of skeletal muscle differentiation by repressor element-1 silencing transcription factor (REST)-regulated Kv7.4 potassium channels
 - 2013-11-01 MOLECULAR PHARMACOLOGY 
Subtype-Selective Activation of Kv7 Channels by AaTXKβ(2-64), a Novel Toxin Variant from the Androctonus australis Scorpion Venom
 - 2009-06-01 NEUROBIOLOGY OF DISEASE 
Neutralization of a unique, negatively-charged residue in the voltage sensor of KV7.2 subunits in a sporadic case of benign familial neonatal seizures
 - 2011-03-01 NEUROPHARMACOLOGY 
Involvement of inward rectifier and M-type currents in carbachol-induced epileptiform synchronization
 - 2011-10-01 PHARMACOLOGICAL RESEARCH 
KV7 channels regulate muscle tone and nonadrenergic noncholinergic relaxation of the rat gastric fund
 - 2014-09-01 PHARMACOLOGICAL RESEARCH 
Critical role of large-conductance calcium- and voltage-activated potassium channels in leptin-induced neuroprotection of N-methyl-D-aspartate-exposed cortical neurons
 - 2014-09-01 PHARMACOLOGICAL RESEARCH 
Functional and biochemical interaction between PPARα receptors and TRPV1 channels: Potential role in PPARα agonists-mediated analgesia
 - 2011-10-01 PHYSIOLOGY 
Driving With No Brakes: Molecular Pathophysiology of Kv7 Potassium Channels
 - 2013-03-12 PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 
Genotype-phenotype correlations in neonatal epilepsies caused by mutations in the voltage sensor of Kv7.2 potassium channel subunits